STAT 408: Week 2

Reproducibility

.R and .Rm

Git and GitHub

Data Structures in

Subsetting

Base R Graphics

STAT 408: Week 2

Reproducible workflows: R Markdown, Git, GitHub

1/25/2022

STAT	408:
Wee	k 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

Reproducibility

Reproducibility

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in

Subsetting

Base R Graphics Research is **reproducible** when the exact results can be reproduced if given access to the original data, software, and code.

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in

Subsetting

Base R Graphics

Reproducibility checklist

Goal: Train new analysts whose only workflow is a reproducible one.

- 1 Are the tables and figures reproducible from the code and data?
- 2 Does the code actually do what you think it does?
- 3 In addition to what was done, is it clear why it was done?
- 4 Can the code by used for other data?
- 5 Can you extend the code to do other things?

How to produce reproducible research?

STAT 408: Week 2

Reproducibility

- .R and .Rmd
- Git and GitHub
- Data Structures in F
- Subsetting
- Base R Graphics

We need an environment where

- data, analysis, and reporting results are tightly connected, or better yet, inseparable
- the original data remain untouched
- all data manipulations and analyses are inherently documented
- documentation is human readable and syntax is minimal

Roadmap

Reproducibility

STAT 408: Week 2

.R and .Rmd

Git and GitHub

Data Structures in I

Subsetting

Base R Graphics

- **1** Scriptability $\rightarrow \mathsf{R}$
- **2** Literate programming \rightarrow R Markdown
- 3 Version control \rightarrow Git + GitHub
 - Lots of mistakes along the way, need ability to revert!
 - Removes barriers to well-documented collaboration
 - Transparent commit history = accountability
 - Mastery takes time, earlier start the better = marketability

STAT	408:
Wee	k 2

Reproducibility

 $.\mathsf{R} \text{ and } .\mathsf{Rmd}$

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

$.\mathsf{R} \text{ and } .\mathsf{Rmd}$

R script files: .R

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures ir

Subsetting

Base R Graphics R demo - create your first R script file!

- make an object assignment (<-)</p>
- then inspect it
- include a comment (#)
- do some basic arithmetic
- call an R function:

functionName(arg1 = val1, arg2 = val2, and so on)

R Markdown setup

R Markdown files: .Rmd

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

R Markdown demo - create your first R Markdown file!

- headers
- italics and bold
- R chunks

STAT	408:
Wee	k 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

Git and GitHub

Basic Git workflow

STAT 408: Week 2

Reproducibility

Useage

.R and .Rmd

Git and GitHub

Data Structures in

Subsetting

Base R Graphics

- pull Always pull first! The importance of this first step will become apparent when we start collaborating with others in the same repo.
- 2 Make your local changes.
- 3 commit Include a short message to remind you what changes you just made. Advice: Commit early and often!
- 4 push "Pushes" your changes to the central repo

More on commit message subject lines

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in

Subsetting

Base R Graphics

	COMMENT	DATE
9	CREATED MAIN LOOP & TIMING CONTROL.	14 HOURS AGO
¢	ENABLED CONFIG FILE PARSING	9 HOURS AGO
¢	MISC BUGFIXES	5 HOURS AGD
¢	CODE ADDITIONS/EDITS	4 HOURS AGO
¢.	MORE CODE	4 HOURS AGO
0	HERE HAVE CODE.	4 HOURS AGO
0	ARAAAAA	3 HOURS AGO
0	ADKFJSLKDFJSDKLFJ	3 HOURS AGO
¢	MY HANDS ARE TYPING WORDS	2 HOURS AGO
¢	HAAAAAAAANDS	2 HOURS AGD
	AS A PROJECT DRAGS ON. MY GIT	COMMIT
	MESSAGES GET LESS AND LESS INFO	RMATIVE

Use the imperative mood: complete the sentence, "If applied, this commit will..."

- Limit 50 characters
- Capitalize
- Do not end with a period

Examples: "Add link to textbook", "Update calendar for week 7"

Basic Git workflow with RStudio

Your turn!

STAT 408: Week 2

- Reproducibility
- .R and .Rmd
- Git and GitHub

Data Structures in I

- Subsetting
- Base R Graphics

- If you don't have a GitHub account, create one now at github.com
- If you do, confirm you know your username and password by logging in at github.com
- Then, enter your name and GitHub username in D2L -> Course Resources -> Survey -> GitHub User Information

Prior to Thursday lab...

STAT 408: Week 2

Reproducibility

.R and .Rmc

Git and GitHub

Data Structures in F

Subsetting

Base R Graphics Read Happy Git with R chapters listed on course calendar and use them to. . .

- create a GitHub account and enter your name and GitHub username in D2L -> Course Resources -> Survey -> GitHub User Information (*should have done today!*)
- 2 install Git
- **3** configure Git, GitHub, and RStudio

STAT	408:
Wee	k 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

Data Structures in R

Reading data files

STAT 408: Week 2

Reproducib .R and .Rm Git and GitHub

Data Structures in R

Subsetting

Base R Graphics The ability to read datasets into R is an essential skill. For this class, most of the files will be on a webpage and can be directly downloaded using read.csv (or read_csv in the tidyverse).

Consider a dataset available at: http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv Seattle <- read.csv('http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv', stringsAsFactors = F)

Viewing data files

STAT 408: Week 2

Reproducib .R and .Rm Git and GitHub

Data Structures in R

Subsetting

Base R Graphics A common function that we will use is head(), which shows the first few rows of a data frame.

head(Seattle, 3)

##		price bed	irooms	bathr	cooms s	qft_living	sqft_lot	floors	waterfront	sqft_above
##	1	1350000	3		2.50	2753	65005	5 1	1	2165
##	2	228000	3		1.00	1190	9199	1	0	1190
##	3	289000	3		1.75	1260	8400) 1	0	1260
##		sqft_baseme	ent zij	pcode	la	t long	yr_sold	mn_sold		
##	1	5	588 9	98070	47.404	1 -122.451	2015	3		
##	2		0 9	98148	47.425	8 -122.322	2014	9		
##	З		0 9	98148	47.436	6 -122.335	2014	8		

Viewing data files

STAT 408: Week 2

Data Structures in Other useful functions to examine a data file: tail(), names(), dim() tail(Seattle, 2)

	##		price	bedroom	s bathro	oms sqft	t_living	sqft_lot	floors	waterfront	sqft_ab	ove
	##	868	399950	:	2 1	.00	710	1157	2	0		710
	##	869	224000	:	31	.75	1500	11968	1	0	1!	500
	##		sqft_ba	asement :	zipcode	lat	long	yr_sold	mn_sold	1		
	##	868		0	98102	47.6413	-122.329	2014	6	3		
R	##	869		0	98010	47.3095	-122.002	2014	e	3		
	nam	nes(S	Seattle))								
	##	[1]	"price	е"	"bedr	ooms"	"bath	rooms"	"sqft	_living"		
	##	[5]	"sqft_	_lot"	"floo	rs"	"wate	rfront"	"sqft	_above"		
	##	[9]	"sqft_	basement	t" "zipc	ode"	"lat"		"long	5"		
	##	[13]	"yr_so	old"	"mn s	old"						

dim(Seattle)

[1] 869 14

Data structure overview

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics R has four common types of data structures:

- Vectors
- Matrices (and Arrays)
- Lists
- Data Frames

Data structure overview

STAT 408: Week 2

Reproducibilit

.R and .Rm

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics The base data structures in R can be organized by dimensionality and whether they are homogenous.

Dimension	Homogenous	Heterogenous
1d	Vector	List
2d	Matrix	Data Frame
no d	Array	

Vector types

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics There are four common types of vectors: logical, integer, double (or numeric), and character. The c() function is used for combining elements into a vector

```
dbl <- c(1,2.5,pi)
int <- c(1L,4L,10L)
log <- c(TRUE,FALSE,F,T)
char <- c('this is','a character string')</pre>
```

Vector types

STAT 408: Week 2

R and .Rm

GitHub

Data Structures in R

Subsetting

Base R Graphics The type of vector can be identified using the typeof() (or class()) function. Note that only a single data type is allowed.

typeof(dbl)

[1] "double"

comb <- c(char,dbl)
typeof(comb)</pre>

[1] "character"

comb

[1] "this is" "a character string" "1"
[4] "2.5" "3.14159265358979"

Exercise: Vectors

STAT 408: Week 2	
Reproducibility	
.R and .Rmd	
Git and GitHub	
Data Structures in R	Create a vector with your first, middle, and last names.
Subsetting	
Base R	

Solution: Vectors

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics Create a vector with your first, middle, and last names.
my.names <- c("Stacey","Allayne","Hancock")
my.names</pre>

[1] "Stacey" "Allayne" "Hancock"

Data frame overview

STAT 408: Week 2

- the most common way of storing data in R
- like a matrix with rows-and-column structure; however, unlike a matrix each column may have a different type
- in a technical sense, a data frame is a list of equal-length vectors

```
df <- data.frame(x = 1:3, y = c('a', 'b', 'c'))
kable(df)
```

```
Data
Structures in R
```

```
Subsetting
```

```
Base R
Graphics
```

STAT	408:
Wee	k 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in R

Subsetting

Base R Graphics

Subsetting

Vector subsetting: by indices

STAT 408: Week 2

Reproducibil .R and .Rmo Git and GitHub

Data Structures i

Subsetting

Base R Graphics

```
Subsetting allows you to extract certain elements from a data frame or vector (or
matrix, array, list). We take subsets of vectors, matrices, and arrays by using square
brackets of the appropriate dimension: [], [,], [,,]
num.vec \leq seq(from = 1, to = 9, by = 1); num.vec
## [1] 1 2 3 4 5 6 7 8 9
num.vec[1:3]
## [1] 1 2 3
num.vec[c(1,5,8)]
## [1] 1 5 8
num.vec[-5]
##
   [1] 1 2 3 4 6 7 8 9
```

Vector subsetting: by logical

STAT 408: Week 2

Reproducibili
R and .Rmd
Git and GitHub
Data Structures in

Subsetting

Base R Graphics

Subsetting also works with logical values or expressions.
<pre>num.vec[num.vec > 5]</pre>
[1] 6 7 8 9
<pre>num.vec[num.vec != 6]</pre>
[1] 1 2 3 4 5 7 8 9
<pre>num.vec[rep(c(TRUE,FALSE,TRUE),each=3)]</pre>
[1] 1 2 3 7 8 9

Data Frame Subsetting: by indices

STAT 408: Week 2

Subsetting

2 2 b ## 3 1 c

```
The same ideas apply to data frames, but the indices now constitute rows and columns of the data frame.
```

```
df <- data.frame(x=1:3, y=3:1, z=c('a','b','c'))
df[,1]
## [1] 1 2 3
df[-1,c(2:3)]
## y z</pre>
```

Data Frame Subsetting: by \$ or subset()


```
Reproducibi
.R and .Rm
Git and
```

```
Data
Structures in
```

```
Subsetting
```

```
Base R
Graphics
```

There are also a couple built in functions in R for subsetting data frames. df\$x ## [1] 1 2 3 new.df <- subset(df, x >1); new.df ## x y z ## 2 2 2 b

3 3 1 c

Exercise: Subsetting

STAT 408: Week 2

Adding to the .Rmd file you created earlier:

1 Read in the Seattle data set:

```
Git and
Cit Hub
```

Data Structures in

Subsetting

Base R Graphics Seattle <- read.csv(
 'http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHo
 stringsAsFactors = F)</pre>

1 Create a new data frame that only includes houses worth more than \$1,000,000.

(bonus) From this new data frame, what is the average living square footage of houses. Hint columns in a data.frame can be indexed by Seattle\$sqft_living.

Exercise: Subsetting - Solutions

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in

Subsetting

Base R Graphics Create a new data frame that only includes houses worth more than \$1,000,000. expensive.houses <- subset(Seattle, price > 1000000) # or expensive.houses <- Seattle[Seattle\$price > 1000000,]

(bonus) From this new data frame what is the average living square footage of houses. Hint columns in a data.frame can be indexed by Seattle\$sqft_living

mean(expensive.houses\$sqft_living)

[1] 3890.065

STAT 408: Week 2
Reproducibility
R and .Rmd
Git and GitHub
Data Structures in R
Subsetting
Base R Graphics

Scatterplot

STAT 408: Week 2

Reproducibility

.R and .Rmd

Git and GitHub

Data Structures in F

Subsetting

Base R Graphics Later in the course, we will spend considerable time on graphics. For now, let's consider some of the basic functionality in R.

plot(Seattle\$price ~ Seattle\$sqft_living)

Seattle\$sqft_living

Add labels: xlab, ylab

STAT 408: Week 2

Reproducibility

.R and .Rm

Git and GitHub

Data Structures in I

Subsetting

Base R Graphics

Living Sqft

Specify point character: pch

Reproducibility

.R and .Rm

Git and GitHub

Data Structures in I

Subsetting

Base R Graphics

Living Sqft

Specify color: col

Reproducibility

.R and .Rm

Git and GitHub

Data Structures in I

Subsetting

Base R Graphics

Living Sqft

Add title: main

Base R Graphics plot(Seattle\$price-Seattle\$sqft_living, ylab='Price', xlab='Living Sqft', pch=16, col=rgb(0,0,.3,.3), main='Price vs. Living Sqft')

Price vs. Living Sqft

Living Sqft

Histogram

Boxplot

STAT 408: Week 2

Reproducibility

.R and .Rmc

Git and GitHub

Data Structures in F

Subsetting

Base R Graphics

boxplot(Seattle\$price ~ Seattle\$bedrooms, ylab='Price', xlab='bedrooms', col='red', main='Price by Bedrooms for Seattle')

Price by Bedrooms for Seattle

bedrooms

Exercise: Basic Plot

Git and GitHub

Data Structures in

Subsetting

Base R Graphics Using only the subset of homes worth more than a million dollars, create a graphic.

Solution: Basic Plot

bedrooms For homes worth more than \$1,000,000

Solution: Basic Plot — Code

