
STAT 408: Week 5
R Overview and Style

2/15/2022

R Programming Style

R Style Guide

While there is not universal agreement on programming style, there are two
good examples:

1. Hadley Wickham’s Style Guide: http://adv-r.had.co.nz/Style.html

2. Google R Style Guide: https://google.github.io/styleguide/Rguide.xml, which
presents different options from Wickham’s guide.

3/58

Notation and Naming

File Names: File names should end in .R (script file) or .Rmd (R Markdown file)
and be concise yet meaningful.

Good: predict_ad_revenue.R

Bad: foo.r

·

·

4/58

Notation and Naming

Identifiers: Don’t use hyphens or spaces in identifiers (or dots when naming
functions).

Tidyverse prefers “snake case”: all lower case letters with words separated
with underscores (variable_name)

Google prefers “camel case”: VariableName

Variable names should be nouns and function names should be verbs

Avoid the names of existing functions!

·

·

·

·

x <- 1:10
mean <- sum(x) # oh no!

5/58

Syntax

Assignment:

Spacing:

·

Use <- not = for assignment-

·

Place spaces around all operators (==, +, ...) and assignment (<-)

Do not place a space before a comma, but always place one after a
comma

Place a space before left parenthesis, except in a function call

-

-

-

6/58

Pipes

Use %>% to emphasize a sequence of actions, rather than the object that the
actions are being performed on.

Avoid using the pipe when:

You need to manipulate more than one object at a time. Reserve pipes for a
sequence of steps applied to one primary object.

There are meaningful intermediate objects that could be given informative
names.

·

·

7/58

Pipes Style

%>% should always have a space before and after

One pipe per line

After the first, indent each line two spaces, ending line with %>%

If the arguments of a function don’t fit on one line (less than 80 characters),
put each argument on its own line and indent

Styling suggestions for + connecting ggplot() commands are similar

·

·

·

·

·

8/58

Exercise

surveys <- read_csv("https://math.montana.edu/shancock/data/animal_survey.csv")

Clean up this code

surveys%>%filter(!is.na(weight) & !is.na(hindfoot_length)) %>%

select(sex, species, hindfoot_length, weight) %>%

group_by(sex) %>%

summarize(mean_hindfoot_length=mean(hindfoot_length),mean_weight=mean(weight),n_species=n_disti

9/58

Solution

your solutions here

10/58

Solution

surveys %>%

 filter(!is.na(weight) & !is.na(hindfoot_length)) %>%

 select(sex, species, hindfoot_length, weight) %>%

 group_by(sex) %>%

 summarize(

 mean_hindfoot_length = mean(hindfoot_length),

 mean_weight = mean(weight),

 n_species = n_distinct(species)

)

11/58

Operators in R

Most mathematical operators are self explanatory, but here are a few more
important operators.

Always type out TRUE and FALSE rather than T and F.

== will test for equality.

& is the AND operator, so TRUE & FALSE will return FALSE.

| is the OR operator, so TRUE | FALSE will return TRUE.

! is the NOT operator, so ! TRUE will return FALSE.

^ permits power terms, so 4 ^ 2 returns 16 and 4 ^ .5 returns 2.

·

For example to determine if pi equals three, this can be evaluated with pi
== 3 in R and will return FALSE. Note this operator returns a logical value.

-

·

·

·

·

12/58

Exercise: Order of operations

Note that order of operations is important in writing R code.

Evaluate all expressions. Note ! is R’s “not” operator.

4 - 2 ^ 2
(4 - 2) ^ 2
5 * 2 - 3 ^ 2
pi == 3
! TRUE & pi == 3
! (TRUE | FALSE)

13/58

Solution: Order of operations

The results of the R code are:

4 - 2 ^ 2

[1] 0

(4 - 2) ^ 2

[1] 4

5 * 2 - 3 ^ 2

[1] 1

14/58

Solution: Order of operations

The results of the R code are:

pi == 3

[1] FALSE

! TRUE & pi == 3

[1] FALSE

! (TRUE | FALSE)

[1] FALSE

15/58

Organization

Layout of .R

The general layout of an R script (.R) should follow as:

1. Author comment

2. File description comment, including purpose of program, inputs, and outputs

3. source() and library() statements

4. Function definitions

5. Executed statements

17/58

Layout of .Rmd

General guidelines for a reproducible R Markdown file (.Rmd):

Code comments should be included in R chunks

R chunks should always be named: {r chunk_name, options}

Print out all code in documents

R output should be integrated into text, using “r mean(x)” (using back ticks in
place of quotes). DO NOT hard code results in written text.

Look at output to verify results look how you intended. Knit often!

·

·

·

·

·

18/58

Commenting

Comment your code. Entire commented lines should begin with # and then
one space.

Short comments can be placed after code preceded by two spaces, # and then
one space.

·

·

create plot of housing price by zipcode

plot(Seattle$Price ~ Seattle$Zip,

 rgb(.5,0,0,.7), # set transparency for points

 xlab='zipode')

(Cmd/Ctrl) + Shift + R is a shortcut to create a new section (particularly helpful
in .R files): # New section title ---------

·

19/58

Tables for R Markdown

Note that output from R can often be hard to read. Luckily there are several
options for creating nicely formatted tables. One, which we will use, is the
kable() function.

20/58

Kable function

Average height of loblolly pine by age

Tree Age Height (ft)

3 4.238

5 10.205

10 27.442

15 40.544

20 51.469

25 60.289

library(knitr)
kable(
 aggregate(Loblolly$height, by = list(Loblolly$age), mean),

 digits = 3,

 caption = 'Average height of loblolly pine by age',

 col.names = c('Tree Age','Height (ft)')

)

21/58

Workspace

Where does your analysis “live”?

Environment (.RData)

History (.Rhistory)

·

·

22/58

Save workspace?

Use your R/Rmd files to recreate your environment. Reproducible research!

23/58

RStudio > Preferences

24/58

Projects

Open RStudio, and type

Projects allow you to set your working directory and operate using relative paths
rather than absolute paths in your code.

getwd()

This is your “working directory” for the project.·

bad
read_csv("/Users/staceyhancock/Documents/stat408/data/nobel.csv")

good
read_csv("data/nobel.csv")

25/58

Parting Words

Use common sense and be consistent.

If you are editing code, take a few minutes to look at the code around you and
mimic the style.

Enough about writing code; the code itself is much more interesting. Have fun!

·

·

·

26/58

Debugging

Course Goals

With this class, we cannot cover every possible situation that you will encounter.
The overall course goals are to:

1. Give you a broad range of tools that can be employed to manipulate,
visualize, and analyze data, and

2. teach you to find help when you or your code “gets stuck”.

28/58

Process for writing code

When writing code (and conducting statistical analyses) an iterative approach is a
good strategy.

1. Test each line of code as you write it and if necessary confirm that nested
functions are giving the desired results.

2. Start simple and then add more complexity.

29/58

Debugging Overview

Finding your bug is a process of confirming the many things that you believe are true
– until you find one which is not true.

– Norm Matloff

30/58

Debugging Guide

We will first focus on debugging when an error, or warning is tripped.

1. Realize you have a bug (if error or warning, read the message)

2. Make it repeatable

3. Identify the problematic line (using print statements can be helpful)

4. Fix it and test it (evaluate nested functions if necessary)

31/58

Warnings vs. Errors

R will flag, print out a message, in two cases: warnings and errors.

What is the difference between the two?

Is the R process treated differently for errors and warnings?

·

·

32/58

Warnings vs. Errors

Fatal errors are signaled with stop() and force all execution of code to stop
triggering an error.

Warnings are generated with warning() and display potential problems.
Warnings do not stop code from executing.

Messages can also be passed using message(), which pass along information.

·

·

·

33/58

Bugs without warning/error

In other cases, we will have bugs in our code that don’t necessarily give a
warning or an error.

Note: NA values often return a warning message, but not always.

How do we identify these bugs?

How can we exit a case where:

·

·

R is running and may be stuck?

the code won’t execute because of misaligned parenthesis, braces,
brackets?

-

-

34/58

Exercise

Debug the following code:

surveys <- read_csv("https://math.montana.edu/shancock/data/animal_survey.csv")

surveys %>%

 filter(!is.na(weight)) %>%

 group_by(sex) %>%

 summarize(

 mean-wgt = mean(weight),

 sd_wgt = sd(weight),

 max_wgt = max(weight)

) %>%
 select(weight, species)

35/58

Solution

your solution here

36/58

Solution

surveys %>%

 filter(!is.na(weight)) %>%

 group_by(sex) %>%

 select(weight, species) %>%

 summarize(

 mean_wgt = mean(weight),

 sd_wgt = sd(weight),

 max_wgt = max(weight)

)

A tibble: 3 × 4

sex mean_wgt sd_wgt max_wgt

<chr> <dbl> <dbl> <dbl>

1 F 42.2 36.8 274

2 M 43.0 36.2 280

3 <NA> 64.7 62.2 243

37/58

Functions

Built in R Functions

To get more details in R, type ?FunctionName. This will open up a help window
that displays essential characteristics of the function. For example, with the mean
function the following information is shown:

Description: function for the (trimmed) arithmetic mean.

Usage: mean(x, trim = 0, na.rm = FALSE, …)

x: An R object.

trim: the fraction (0 to 0.5) of observations to be trimmed from each end of x
before the mean is computed.

na.rm: a logical value indicating whether NA values should be stripped before
the computation proceeds.

39/58

Writing your own functions

Functions are a way to save elements of code to be used repeatedly.

Syntax

name_of_function <- function(arguments) {

 # Documentation

 body of function...

}

40/58

Example

RollDice <- function(num.rolls) {

 #
 # ARGS:

 # RETURNS:

 sample(6, num.rolls, replace = T)

}
RollDice(2)

[1] 2 2

41/58

Style: Functions

Opening curly brace should never go on its own line and should always be
followed by a new line

Closing curly brace should always go on its own line, unless it’s followed by
else

If needed, place each argument on its own line, and indent to match the
opening (of function OR double-indent (four spaces)

Space between closing) of function arguments and start of function {

·

·

·

·

42/58

Organization: Functions

Functions should contain a comments section immediately below the function
definition line. These comments should consist of

The comments should be descriptive enough that the function can be used
without reading the function code.

1. a one-sentence description;

2. a list of the functions arguments, denoted by Args:, with a description of
each and

3. a description of the return value, denoted by Returns:.

43/58

Exercise: Function Descriptions

Document this function with

1. a description,

2. summary of input(s)

3. summary of outputs

RollDice <- function(num.rolls) {

 #
 # ARGS:
 # RETURNS:

 return(sample(6, num.rolls, replace = T))

}

44/58

Solution: Function Descriptions

RollDice <- function(num.rolls) {

 # function that returns rolls of dice

 # ARGS: num.rolls - number of rolls

 # RETURNS: vector of num.rolls of a die

 return(sample(6, num.rolls, replace = T))

}
RollDice(2)

[1] 3 2

45/58

Format of an R function

Here is an example (trivial) R function.

SquareRoot <- function(value.in) {

 # function takes square root of value.

 # Args: value.in - numeric value

 # Returns: the square root of value.in

 value.in ^ .5

}

46/58

Square Root Function

Now consider running the function for a few values.

Now what happens with SquareRoot(-1)?

SquareRoot(9)

[1] 3

SquareRoot(25)

[1] 5

47/58

Square Root Function

What should happen?

SquareRoot(-1)

[1] NaN

48/58

Errors in R functions

Here is an example (trivial) R function.

SquareRoot <- function(value.in) {

 # function takes square root of value.

 # Args: value.in - numeric value

 # Returns: the square root of value.in

 if (value.in < 0) {

 stop('argument less than zero')

 }
 value.in ^ .5

}

49/58

Square Root Function

This returns:

SquareRoot(-1)

> SquareRoot(-1)

Error in SquareRoot(-1) :

 argument less than zero

50/58

Exercise: Writing and Documenting a Function

Use the defined style guidelines to create an R script that:

Verify your functions works by running it twice using “MT” and “NE” as inputs.

1. Takes a state abbreviation as an input

2. Imports a file available at:
http://math.montana.edu/ahoegh/teaching/stat408/datasets/HousingSales.csv

3. Creates a subset of housing sales from that state

4. Returns a vector with the mean closing price in that state

51/58

Solution: Writing and Documenting a Function

SummarizeHousingCosts <- function(state) {

 # computes average sales price in a state

 # ARGS: state abbr, such as 'MT' or 'CA'

 # RETURNS: vector with average sales price that each state

 housing.data <- read.csv(

 'http://math.montana.edu/ahoegh/teaching/stat408/datasets/HousingSales.csv')

 location <- subset(housing.data, State == state)

 mean(location$Closing_Price)

}

SummarizeHousingCosts('MT')

[1] 164608

SummarizeHousingCosts('NE')

[1] 152050

52/58

Even better: Make pathname an argument

SummarizeHousingCosts <- function(

 state,

 path

) {
 # computes average sales price in a state

 # ARGS:

 # state - abbr, such as 'MT' or 'CA'

 # path - character pathname to data

 # RETURNS: vector with average sales price that each state

 housing.data <- read.csv(path)

 location <- subset(housing.data, State == state)

 mean(location$Closing_Price)

}

53/58

Now what will happen if we try this code?

SummarizeHousingCosts('MT',

 path = 'http://math.montana.edu/ahoegh/teaching/stat408/datasets/HousingSales.csv')

[1] 164608

SummarizeHousingCosts('MT')

54/58

Even better: Make a default

SummarizeHousingCosts <- function(

 state,

 path = 'http://math.montana.edu/ahoegh/teaching/stat408/datasets/HousingSales.csv'

) {
 # computes average sales price in a state

 # ARGS:

 # state - abbr, such as 'MT' or 'CA'

 # path - character pathname to data

 # RETURNS: vector with average sales price that each state

 housing.data <- read.csv(path)

 location <- subset(housing.data, State == state)

 mean(location$Closing_Price)

}

SummarizeHousingCosts('MT')

[1] 164608

55/58

Exercise: Functions Part 2

Now write a function that;

Also include and the stop() function for errors. Test this function with two
settings:

1. Takes daily snowfall total in inches as input

2. Takes day of week as input

3. Returns whether to ski or stay home.

snowfall = 15, day = “Sat”

snowfall = -1, day = “Mon”

·

·

56/58

Solution: Functions Part 2

ToSki <- function(snowfall, day) {

 # determines whether to ski or stay home

 # ARGS: snowfall in inches, day as three letter

 # abbrwith first letter capitalized

 # RETURNS: string stating whether to ski or not

 if (snowfall < 0) stop('snowfall should be greater

 than or equal to zero inches')

 if (day == 'Sat') {
 print('Go Ski')

 } else if (snowfall > 5) {

 print('Go Ski')

 } else print('Stay Home')

}

57/58

Solution: Functions Part 2 cont..

ToSki(snowfall = 15, day = "Sat")

[1] "Go Ski"

ToSki(-1, 'Mon')

Error in ToSki(-1, "Mon"): snowfall should be greater

than or equal to zero inches

58/58

