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Simulation, Loops, and If/Else Statements
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Simulation in R



What is Simulation

A few questions about simulation:

1. What does statistical simulation mean to you?

2. Describe a setting where simulation can be used.
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Simulation of Roulette

Consider the casino game Roulette.

We can use simulation to evaluate gambling strategies.
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Roulette Simulation in R

RouletteSpin <- function(num.spins){ 
  # function to simulate roulette spins 
  # ARGS: number of spins 
  # RETURNS: result of each spin 
  outcomes <- data.frame(number = c('00','0', as.character(1:36)), 
                color=c('green','green','red','black','red','black', 
                        'red','black','red','black','red','black', 
                        'black','red','black','red','black', 
                        'red','black','red','red','black', 
                        'red','black','red','black','red', 
                        'black','red','black','black','red', 
                        'black','red','black','red','black','red')) 
  return(outcomes[sample(38, num.spins, replace = TRUE),]) 
}
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number color

10 black

8 black

kable(RouletteSpin(2), row.names=FALSE)
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Exercise: Probability of Red, Green, and Black

1. Calculate/derive the probability of landing on green, red, and black.

2. How can the RouletteSpin() function be used to compute or approximate
these probabilities?

7/48

Solution: Probability of Red, Green, and Black

In this situation, it is easy to compute the probabilities of each color analytically.
However, consider simulating this process many times to estimate these
probabilities.

Analytically  0.4737, this is estimated as 0.47. Similarly, 

 0.4737, this is estimated as 0.472 and 
0.0526, this is estimated as 0.058

num.sims <- 1000 
spins <- RouletteSpin(num.sims) 
p.red <- sum(spins[,2] == 'red') / num.sims 
p.black <- sum(spins[,2] == 'black') / num.sims 
p.green <- sum(spins[,2] == 'green') / num.sims

P[red] = =18

38

P[black] = =18

38
P[green] = =2

38
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Exercise: Simulation Questions – Part 2

Now what happens if we:

1. run the simulation again with the same number of trials?

2. run the simulation with more trials, say 1 million?
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Solution: Simulation Questions – Part 2

Run the simulation again with the same number of trials:

The simulated results are different Analytically  0.4737, this is

estimated as 0.458. Similarly,  0.4737, this is estimated as

0.488 and  0.0526, this is estimated as 0.054

num.sims <- 1000 
spins <- RouletteSpin(num.sims) 
p.red <- sum(spins[,2] == 'red') / num.sims 
p.black <- sum(spins[,2] == 'black') / num.sims 
p.green <- sum(spins[,2] == 'green') / num.sims

P[red] = =18

38

P[black] = =18

38

P[green] = =2

38
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Solution: Simulation Questions – Part 2

Run the simulation with more trials, say 1 million:

Analytically  0.4737, this is estimated as 0.4742. Similarly, 

 0.4737, this is estimated as 0.4727 and 
0.0526, this is estimated as 0.0531

num.sims <- 1000000 
spins <- RouletteSpin(num.sims) 
p.red <- sum(spins[,2] == 'red') / num.sims 
p.black <- sum(spins[,2] == 'black') / num.sims 
p.green <- sum(spins[,2] == 'green') / num.sims

P[red] = =18

38

P[black] = =18

38
P[green] = =2

38
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Conditional Expressions in R



Exercise: Conditions in R

We have touched on many of these before, but here are some examples of
expressions (conditions) in R. Evaluate these expressions:

pi > 3 & pi < 3.5
c(1,3,5,7) %in% 1:3
1:3 %in% c(1,3,5,7)
rand.uniform <- runif(n = 1, min = 0, max = 1) 
rand.uniform < .5
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Solutions: Conditions in R

pi > 3 & pi < 3.5

## [1] TRUE

c(1,3,5,7) %in% 1:3

## [1]  TRUE  TRUE FALSE FALSE

1:3 %in% c(1,3,5,7)

## [1]  TRUE FALSE  TRUE

rand.uniform <- runif(n = 1, min = 0, max = 1); rand.uniform

## [1] 0.6718267

rand.uniform < .5

## [1] FALSE
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Conditional Expression: If and Else

Now what does this return?

print(rand.uniform)

## [1] 0.6718267

if (rand.uniform < .5){ 
  print('value less than 1/2') 
} else {
    print('value greater than or equal to 1/2') 
}
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Conditional Expression: If and Else

print(rand.uniform)

## [1] 0.6718267

if (rand.uniform < .5){ 
  print('value less than 1/2') 
} else {
    print('value greater than or equal to 1/2') 
}

## [1] "value greater than or equal to 1/2"
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Conditional Expression: Vectorized?

Does this function accept a vector as an input?

rand.uniform2 <- runif(2) 
print(rand.uniform2) 
if (rand.uniform2 < .5){ 
  print('value less than 1/2') 
} else {
    print('value greater than or equal to 1/2') 
}
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Conditional Expression: Vectorized?

rand.uniform2 <- runif(2) 
print(rand.uniform2)

## [1] 0.8362597 0.8058175

if (rand.uniform2 < .5){ 
  'value less than 1/2' 
} else {
    'value greater than 1/2' 
}

## [1] "value greater than 1/2"
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Conditional Expression: ifelse()

The ifelse() function is vectorized and generally preferred with a single set of
if/else statements.

print(rand.uniform2)

## [1] 0.8362597 0.8058175

ifelse(rand.uniform2 < .5,'less than 1/2', 
       'greater than 1/2')

## [1] "greater than 1/2" "greater than 1/2"
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Exercise: Conditional Expression

Write a conditional statement that takes a playing card with two arguments,
number (A, 2,…, 10, J, Q, K) and suit (C, D, H, S), and prints Yes if the card is a red
face card and No otherwise.

Verify this works using the following inputs:

4 of clubs: card.number <- '4' and card.suit <- 'C'

King of hearts: card.number <-'K' and card.suit <- 'H'

·

·

card.number <- 'J' and card.suit <- 'D'

card.number <- 'Q' and card.suit <- 'S'

·

·
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Solution: Conditional Expression

card.number <- 'J' 
card.suit <- 'D' 
ifelse(card.number %in% c('J','Q','K') &  
         card.suit %in% c('H','D'),'Yes','No')

## [1] "Yes"

card.number <- 'Q' 
card.suit <- 'S' 
ifelse(card.number %in% c('J','Q','K') &  
         card.suit %in% c('H','D'),'Yes','No')

## [1] "No"
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Loops



for loops

When you want to do the same thing more than once:

output <- vector("numeric", 100) # Set up empty object 
for(i in LOOP_OVER_THIS_SEQUENCE) { 
  # Repeat this code on each item in the sequence 
  # Store in output vector 
}
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for loops

What will each of these two loops print?

and

rand.uniform2

## [1] 0.8362597 0.8058175

for (i in seq_along(rand.uniform2)){ 
  print(i)
}

for (i in rand.uniform2){ 
  print(i)
}
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for loops

We can loop through a sequence or a vector.

for (i in seq_along(rand.uniform2)){ 
  print(i)
}

## [1] 1 
## [1] 2

for (i in rand.uniform2){ 
  print(i)
}

## [1] 0.8362597 
## [1] 0.8058175
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While loops

An alternative to for loops is to use the while statement.

set.seed(02012017) 
total.snow <- 0 
while (total.snow < 36){ 
  print(paste('need more snow, only have',  
              total.snow, 'inches')) 
  total.snow <- total.snow + rpois(1,15) 
}
  print(paste('okay, we now have', total.snow, 'inches'))
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Exercise: Loops

Assume you plan to wager $1 on red for ten roulette spins. If the outcome is red
you win a dollar and otherwise you lose a dollar. Write a loop that simulates ten
rolls and determines your net profit or loss.

#hint: to get color from a single spin use 
RouletteSpin(1)[2]

##    color 
## 38   red
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Solution: Loops

Assume you plan to wager $1 on red for ten roulette spins. If the outcome is red
you win a dollar and otherwise you lose a dollar. Write a loop that simulates ten
rolls and determines your net profit or loss.

profit <- 0
for (i in 1:10){
  ifelse(RouletteSpin(1)[2] == 'red', 
         profit <- profit + 1,  
         profit <- profit - 1 ) 
}
profit

## [1] 4
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Why not loops?

Some of you have seen or heard that loops in R should be avoided.

Why: it has to do with how code is compiled in R. In simple terms, vectorized
operations are much more efficient than loops.

How: we have seen some solutions to this, explicitly using the apply class of
functions. We can also write vectorized functions, consider the earlier roulette
example where number of spins was an argument for the function.

·

·
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Monte Carlo Procedures



Motivation for Monte Carlo procedures

Some probabilities can easily be calculated either intuitively or using pen and
paper; however, as we have seen we can also simulate procedures to get an
approximate answer.

Consider poker, where players are dealt a hand of five cards from a deck of 52
cards. What is the probability of being dealt a full house?
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Full House Probability Calculation

Could we analytically compute this probability? Yes Is it an easy calculation? not
necessarily. So consider a (Monte Carlo) simulation.

DealPoker <- function(){ 
  # Function returns a hand of 5 cards 
  
  
  
  
}
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Full House Probability Calculation

Could we analytically compute this probability? Yes Is it an easy calculation, not
necessarily. So consider a (Monte Carlo) simulation.

DealPoker <- function(){ 
  # Function returns a hand of 5 cards 
  deck <- data.frame( suit = rep(c("H", "S","C","D"),each=13), 
          card = rep(c('A',2:10,'J',"Q",'K'),4) )   
  return(deck[sample(52,5),])
}
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Full House Probability Calculation

Next write another function to check if the hand is a full house.

Does this work? If not, what is the problem and how do we fix it?

IsFullHouse <- function(hand){ 
  #determines whether a hand of 5 cards is a full house 
  #ARGS: data frame of 5 cards 
  #RETURNS: TRUE or FALSE 
  cards <- hand[,2] 
  num.unique <- length(unique(cards)) 
  ifelse(num.unique == 2, return(TRUE), return(FALSE))  
}
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Full House Probability Calculation

IsFullHouse <- function(hand){ 
  #determines whether a hand of 5 cards is a full house 
  #ARGS: data frame of 5 cards 
  #RETURNS: TRUE or FALSE 
  cards <- hand[,2] 
  num.unique <- length(unique(cards)) 
  num.appearances <- aggregate(rep(1,5), 
                               list(cards),sum) 
  max.appearance <- max(num.appearances[,2]) 
  ifelse(num.unique == 2 & max.appearance ==3, 
         return(TRUE), return(FALSE))  
}
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Full House Probability Calculation

Analytically the probability of getting a full house can be calculated as
approximately 0.00144, with our simulation procedure we get 0.00141.

num.sims <- 1e5 
sim.hands <- replicate(num.sims, DealPoker(), simplify=FALSE) 
results <- lapply(sim.hands, IsFullHouse) 
prob.full.house <- sum(unlist(results))/num.sims
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Closing Thoughts on Monte Carlo

A few facts about Monte Carlo procedures:

They return a random result due to randomness in the sampling procedures.

The run-time (or number of iterations) is fixed and typically specified.

Mathematically, Monte Carlo procedures are computing an integral or
enumerating a sum.

They take advantage of the law of large numbers.

They were given the code name Monte Carlo in reference to the Monte Carlo
Casino in Monaco.

·

·

·

·

·
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Advanced Debugging



Overview

We can often fix bugs using the ideas sketched out previously and this becomes
easier with more experience coding in R. Trial and error can be very effective and
strategic use of print() function help to identify where bugs are occuring.

However, R does also have advanced tools to help with debugging code.

traceback()

“Rerun with debug”

browser()

·

·

·
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traceback()

Consider the following code:

f <- function(a) g(a)  
g <- function(b) h(b) 
h <- function(c) i(c) 
i <- function(d)  "a" + d 
f(10)

## Error in "a" + d: non-numeric argument to binary operator
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traceback()

Consider the traceback() function. Which identifies which functions have been
executed (along with the row number of the function).

Note: due to the way that R Markdown is compiled, traceback() needs to be
run directly in R, not R Markdown.

> traceback() 

4: i(c) at #1
3: h(b) at #1
2: g(a) at #1
1: f(10)
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Browsing on an error

Another option (in R Studio) is to browse on the error. This gives you an
interactive way to move through the function calls to identify the problem of the
location. This can also be called explicitly using debug().
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browser()

The browser function can also be used to interactively step through a function.

SS <- function(mu, x) { 
  browser() 
  d <- x - mu
  d2 <- d^2
  ss <- sum(d2)
  ss
}
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browser() step 1
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browser() step 2
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browser() step 3
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browser() step 4
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browser() step 5
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